Przechytrzyć Heisenberga i Pauliego, by dokładniej mierzyć upływ czasu? Tak! Dzięki stanom ściśniętym

Grafika obrazująca mechanizm ściśnięcia w ultra-zimnych gazach atomów fermionowych umieszczo-nych w periodycznych sieciach optycznych została wykonana przez dr Mazenę Mackoit Sinkevičienė z Uniwersytetu Wileńskiego.
Grafika obrazująca mechanizm ściśnięcia w ultra-zimnych gazach atomów fermionowych umieszczo-nych w periodycznych sieciach optycznych została wykonana przez dr Mazenę Mackoit Sinkevičienė z Uniwersytetu Wileńskiego.

Czy da się obejść zasadę nieoznaczoności Heisenberga i ominąć zakaz Pauliego, aby jeszcze precyzyjniej mierzyć czas w zegarach optycznych? Z tym zagadnieniem zmierzyła się polsko-litewska grupa fizyków. Pokazują oni, jak wytworzyć w ultrazimnym gazie fermionowym tzw. stany ściśnięte.

Wyniki badań międzynarodowego zespołu z udziałem grupy dr hab. Emilii Witkowskiej (IF PAN, Warszawa) i prof. Gediminasa Juzeliunasa (Vilnius University, Wilno), we współpracy z dr. Marcinem Płodzieniem (ICFO, Barcelona) ukazały się w prestiżowym “Physical Review Letters”. Badania podsumowuje w wypowiedzi dla PAP dr Witkowska z zespołem.

ROZMYTA RZECZYWISTOŚĆ

W świecie dużych, widzialnych gołym okiem obiektów, przyzwyczailiśmy się do przewidywalności: jeśli znamy położenie danego ciała i jego pęd, dzięki równaniom Newtona, możemy obliczyć jego trajektorię i wskazać dokładnie, gdzie ten obiekt znajdzie się w określonym czasie - takie obiekty nazywamy obiektami klasycznymi. Jeśli jednak badamy obiekty w nanoskali, to ujawnia się ich falowa natura i “klasyczna" przewidywalność się kończy. Wynika to z praw fizyki, a nie z niedokładności naszych narzędzi pomiarowych. Konsekwencją falowej natury cząstek jest m.in. brak możliwości określenia z całą pewnością, jakie jest położenie cząstki, a jedynie można określić prawdopodobieństwo, z jakim cząstka znajduje się w danym punkcie przestrzeni. Prawdopodobieństwo to określone jest przez stan kwantowy, w jakim znajduje się cząstka.

ZAWADA NIEOZNACZONOŚCI

Następstwem kwantowej natury obiektów jest zasada nieoznaczoności Heisenberga, która mówi, że niemożliwe jest zmierzenie jednocześnie wszystkich własności cząstki kwantowej z dowolną precyzją: na przykład jednocześnie jej położenia i pędu.

Cząstka kwantowa może znajdować się w różnych stanach. W tzw. stanie koherentnym niepewność pomiaru jej położenia i pędu są sobie równe. Gdy cząstka znajduje się w stanie, w którym niepewność jednego pomiaru jest zredukowana kosztem zwiększenia niepewności drugiego, nazywany on jest stanem ściśniętym.

Ogrom współczesnych badań związany jest z zaproponowaniem wykorzystania efektów kwantowych pozwalających na zwiększenie precyzji pomiaru danej wielkości, np. wspomniane ściśnięcie kwantowe.

TYKANIE SUPERDOKŁADNYCH ZEGARÓW

Przykładowo, najdokładniejsze obecnie zegary wykorzystują atomy do odmierzania upływu czasu - pomiar jednostki czasu, czyli sekundy, jest oparty na pomiarze różnicy energetycznej pomiędzy dwoma poziomami energetycznymi, czyli tzw. częstości przejścia atomowego. W pomiarach laboratoryjnych schładza się atomy, np. cezu, do temperatury bliskiej zeru absolutnemu, tzn. rzędu nanokelwinów, a następnie na podstawie pomiaru różnicy liczby atomów w stanie o wyższej i niższej energii, wyznaczana jest częstotliwość przejścia atomowego. Stanowi to podstawę definicji współczesnej jednostki czasu. Innymi słowy, im dokładniej zmierzymy częstotliwość przejścia atomowego, z tym większą precyzją możemy odmierzać upływ czasu. Obecnie zegary atomowe osiągają precyzję około jednej dziesiątej nanosekundy na dzień, co oznacza, że zegar atomowy może spóźniać się o jedną sekundę na 300 milionów lat. Jednak naukowcy wciąż się głowią, jak można jeszcze zwiększyć tak fantastyczną precyzję.

“Można zapytać, czy tak super precyzyjne odmierzanie czasu jest nam potrzebne? Otóż, tak, i jedna z najprostszych odpowiedzi związana jest z dokładnością działania systemów GPS, których używamy w naszym codziennym życiu, gdy przemieszczamy się z jednego miejsca do drugiego. Właściwa synchronizacja czasu ma tu fundamentalne znaczenie: gdy zegary na orbicie i na Ziemi nie są zsynchronizowane, system GPS bardzo szybko traci dokładność lokalizacji” - mówi dr Płodzień (stypendysta programu NAWA Bekker 2020).

Przykładowo, jeśli zegary są zsynchronizowane na poziomie setnej sekundy, to dokładność położenia wskazywanego przez GPS wynosi około trzy kilometry! "Możemy sobie wyobrazić, jakie to miałoby konsekwencje na dotarcie do celów naszych podróży lokalizowanych z taką dokładnością” - mówi dr Płodzień.

"To jednak nie wszystko - dodaje. -Precyzyjne pomiary częstotliwości są bardzo ważne dla rozwoju nauki, np. pozwalają zweryfikować przewidywania Ogólnej Teorii Względności Alberta Einsteina i to, że czas płynie różnie w zależności od natężenia pola grawitacyjnego, co oznacza, że czas biegnie inaczej na Ziemi niż na orbicie satelitarnej, na której znajdują się wspomniane już wcześniej satelity GPS. Synchronizacja zegarów na Ziemi i orbicie musi uwzględniać ten efekt. Superprecyzyjny zegar pozwoliłby również na wykrycie fal grawitacyjnych i detekcję hipotetycznej ciemnej materii, która może wywoływać powolne oscylacje stałych fizycznych.”

Aby budować tak superprecyzyjne urządzenia jak zegary optyczne, potrzeba jak najbardziej dokładnych informacji o pojedynczych cząstkach. Aby tę precyzję jednak osiągnąć, potrzeba pomiarów tak precyzyjnych, że wchodzimy w nich w świat kwantów. W budowie coraz lepszych zegarów realnie zaczynają więc już przeszkadzać limity związane z zasadą nieoznaczoności Heisenberga. Stąd tak istotny wydaje się fizykom pomysł na tworzenie tzw. stanów ściśniętych. W uproszczeniu chodzi o takie uwięzienie cząstek - np. w oczkach optycznej "klatki”, aby móc precyzyjnie poznać pewną własność - tzw. częstość przejścia atomowego - kosztem rozmycia innej własności, która nie będzie istotna w docelowym urządzeniu.

JAK SKONTAKTOWAĆ ZE SOBĄ FERMIONY

Dotychczas wytworzenie stanów ściśniętych w ultrazimnych atomach było możliwe przy użyciu tzw. atomów bozonowych. Takie atomy są w stanie oddziaływać między sobą na skutek zderzeń. Dla bozonów jednak istnieje zależność przesunięcia poziomów energetycznych, której wartość zależy głównie od gęstości atomów, co z kolei powoduje, że dokładność pomiarów częstości przejść atomowych jest znacznie zmniejszona.

Natomiast przesunięcie poziomów energetycznych w atomach fermionowych jest mocno ograniczone, dlatego fermiony doskonale nadają się do precyzyjnych pomiarów częstotliwości. Naukowcom zależało więc na tym, by stany ściśnięte wytworzyć również i w takich gazach atomowych.

Było to jednak wielkim wyzwaniem. Na drodze stał tzw. zakaz Pauliego, który blokuje możliwość wzajemnego oddziaływania atomów fermionowych w temperaturach bliskich zeru absolutnemu. W konsekwencji braku oddziaływań między atomami nie jest możliwe wygenerowanie ściśnięcia. To ograniczenie udało się jednak obejść.

„Nasz pomysł polega na tym, aby na fermiony spułapkowane w sieci optycznej, w której znajduje się jeden fermion w pojedynczym oczku sieci, poświecić zewnętrznym światłem laserowym o odpowiedniej fazie. Okazuje się, że sprzężenie atomów ze światłem wprowadza potrzebne nam oddziaływanie pomiędzy fermionami i generuje wysoce ściśnięte stany kwantowe” - mówi dr hab. Witkowska.

Pomysł ten - jak liczą badacze - będzie można wykorzystać w przyszłości do zwiększenia dokładności pomiaru częstości przejść atomowych w niezwykle stabilnych i superprecyzyjnych zegarach - opartych o atomy fermionowe w sieciach optycznych.

“Zaproponowana przez nas metoda wymaga tylko niewielkiej modyfikacji układów badanych obecnie w laboratoriach, zarówno ultrazimnych fermionów umieszczonych w periodycznej sieci optycznej, jak i tzw. pęset optycznych” - kończy prof. Juzeliunas.

Badania polskiego zespołu finansowane są w ramach projektu NCN DAINA oraz NAWA BEKKER 2020.

PAP - Nauka w Polsce, Ludwika Tomala

lt/ agt/

Fundacja PAP zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: naukawpolsce.pl, a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - naukawpolsce.pl. Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów wideo.

Czytaj także

  • LHC, Adobe Stock

    Bozonem o bozon: a gdyby tak zderzyć ze sobą dwie boskie cząstki?

  • Adobe Stock

    Kiedy i jak widzimy podczerwień? Opisano jasność widzenia “niewidzialnych” fotonów

Przed dodaniem komentarza prosimy o zapoznanie z Regulaminem forum serwisu Nauka w Polsce.

newsletter

Zapraszamy do zapisania się do naszego newslettera