Naukowcy stworzyli autonomicznego, biohybrydowego robota w kształcie ryby, napędzanego ludzkimi komórkami serca. Syntetyczna ryba pływała aż 100 dni. Jest to osiągnięcie na polu robotyki i krok w stronę lepszych protez serca i zrozumienia jego zaburzeń.
Zespół z Harvard University z kolegami z Emory University stworzył autonomicznego, biohybrydowego robota w kształcie ryby, napędzanego ludzkimi komórkami serca.
„Naszym ostatecznym celem jest budowa sztucznego serca, którym będzie można zastępować u dzieci narządy z wrodzonymi wadami” - mówi prof. Kit Parker z Harvardu.
„Większość prac nad otrzymaniem tkanki serca, m.in. część naszych wysiłków, skupia się na odtworzeniu anatomicznych cech lub prostych skurczów. W tym przypadku jednak czerpiemy z inspirację z biofizyki serca, co jest trudniejszym zadaniem. Teraz, zamiast wykorzystywania obrazów serca jako wzoru, określiliśmy kluczowe zasady biofizyczne, które pozwalają sercu pracować. Użyliśmy ich jako kryteriów naszego projektu i odtworzyliśmy w naszym systemie - żywej, pływającej rybie. To pozwala na łatwiejsze sprawdzenie, czy odnieśliśmy sukces” - badania zespołu opisuje prof. Parker.
Już w 2012 roku jego zespół - wykorzystując podobne komórki - stworzył przypominającą meduzę pompę, natomiast w roku 2016 - pływającego robota w kształcie płaszczki. W najnowszym projekcie badacze wzorowali się na rybce z gatunku danio pręgowane. Tym razem po raz pierwszy komórki ułożone zostały w dwie warstwy. Zlokalizowane są po obu stronach płetwy i gdy jedna się kurczy - druga rozciąga.
„Poprzez wykorzystanie mechaniczno-elektrycznych sygnałów między dwiema warstwami stworzyliśmy cykl, w którym każdy skurcz stanowi reakcję na rozciąganie przeciwnej warstwy. Ukazuje to rolę sprzężenia zwrotnego w pompach mięśniowych takich, jak serce” - wyjaśnia jeden z autorów wynalazku, dr Keel Yong Lee.
System napędzał rybkę przez 100 dni.
Badacze stworzyli też układ działający podobnie jak rozrusznik serca, który kontrolował rytm komórek.
„Nasze dokonanie doprowadziło do uzyskania modelu do badania mechaniczno-elektrycznych sygnałów, które można by wykorzystać w terapiach rytmu serca. Pomaga też lepiej zrozumieć patofizjologię węzła zatokowo-przedsionkowego w arytmiach” - podkreśla ekspert.
"Ryba" ma dodatkową, nietypową właściwość. Z biegiem czasu działała coraz lepiej - ponieważ komórki dojrzewały, kurczyły się coraz mocniej i w coraz bardziej skoordynowany sposób. W szczytowym momencie, jeśli chodzi o swoje możliwości, robot poruszał się równie szybko, jak żywy danio pręgowany.
Naukowcy planują tworzenie kolejnych, bardziej złożonych układów.
„Mógłbym zbudować model serca z ciastoliny, ale to nie znaczy, że mogę stworzyć serce” - zwraca uwagę dr Parker. - „Można wyhodować przypadkowe komórki nowotworowe, aż ułożą się w pulsującą grudkę i nazywać to organoidem serca. Jednak żadne z tych podejść nie odtworzy fizyki systemu, który uderza ponad miliard razy w ciągu życia, regenerując jednocześnie swoje komórki. To prawdziwe wyzwanie. W tym kierunku zmierzamy”.
Więcej informacji na stronach: https://www.youtube.com/watch?v=PudGp0BeHTw i https://www.seas.harvard.edu/news/2022/02/biohybrid-fish-made-human-cardiac-cells-swims-heart-beats (PAP)
Marek Matacz
mat/ zan/
Fundacja PAP zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: naukawpolsce.pl, a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - naukawpolsce.pl. Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów wideo.