Nauka dla Społeczeństwa

29.03.2024
PL EN
03.10.2020 aktualizacja 06.10.2020

O tym, jak doszło do spotkania dwóch odmiennych czarnych dziur

Jak doszło do zderzenia dwóch czarnych dziur o różnych masach? Od prawego górnego rogu do dolnego lewego: 1) faza układu podwójnego gwiazd, 2) faza wspólnej otoczki, gdzie czarna dziura - powstała z masywniejszej gwiazdy - znajduje się wewnątrz otoczki drugiej gwiazdy (czarnej dziury nie widać) 3) faza dwóch czarnych dziur, które dążą do połączenia. 4) Fale grawitacyjne towarzyszące połączeniu czarnych dziur. Fot: źródło: CAMK PAN, https://iopscience.iop.org/article/10.3847/2041-8213/abb5b5 Jak doszło do zderzenia dwóch czarnych dziur o różnych masach? Od prawego górnego rogu do dolnego lewego: 1) faza układu podwójnego gwiazd, 2) faza wspólnej otoczki, gdzie czarna dziura - powstała z masywniejszej gwiazdy - znajduje się wewnątrz otoczki drugiej gwiazdy (czarnej dziury nie widać) 3) faza dwóch czarnych dziur, które dążą do połączenia. 4) Fale grawitacyjne towarzyszące połączeniu czarnych dziur. Fot: źródło: CAMK PAN, https://iopscience.iop.org/article/10.3847/2041-8213/abb5b5

W kwietniu ub. r. zaobserwowano fale grawitacyjne świadczące o tym, że połączyły się dwie czarne dziury o znacznie różniących się od siebie masach. Zespół kierowany przez Polaków teraz wyjaśnił, jak to możliwe, że tak odmienne obiekty mogły być swoimi sąsiadami. I jak doszło do ich kosmicznego spotkania.

W kwietniu ub.r. eksperymenty LIGO/Virgo zaobserwowały fale grawitacyjne pochodzące z połączenia się czarnych dziur o masach ok. 30 i 10 mas Słońca (obiekt GW 190412). I tak kosmiczne zdarzenie, które miało miejsce dawno, dawno temu, w odległej galaktyce - 2,4 miliardy lat świetlnych stąd - "zakołysało" urządzeniami pomiarowymi na Ziemi.

Badacze nie za bardzo wiedzieli, jak przeprowadzić "inżynierię odwrotną" tego wydarzenia i dowiedzieć się, jak mogło dojść do tego, że obiekty o tak różniących się od siebie masach znalazły się w swoim sąsiedztwie. Byli bowiem przyzwyczajeni do modelowania "symetrycznych" zderzeń dwóch czarnych dziur, a więc łączenia się czarnych dziur o podobnych masach. A tu taka zagwozdka...

Na szczęście w rozwiązaniu problemu pomogły modele polskich astrofizyków, dzięki którym udało się odszyfrować przeszłość układu.

Z polsko-amerykańsko-francuskich badań - opublikowanych w Astrophysical Journal Letters - wynikło, że ten tzw. merger powstał z dwóch masywnych gwiazd - jedna z nich miała na początku 78 MS, a druga 34 MS. Pierwsza autorka publikacji, Aleksandra Olejak, doktorantka z Centrum Astronomicznego im. M. Kopernika PAN w rozmowie z PAP tłumaczy, że gwiazdy te znajdowały się w odległości 700 promieni Słońca, czyli ok. 3 razy dalej niż odległość Ziemi od Słońca.

Masywniejsza gwiazda szybciej zużyła swoje paliwo, zaczęła się rozszerzać, jej otoczka znalazła się bliżej sąsiadki i gwiazdy zaczęły się wymieniać między sobą materią. Potem gwiazda ta zgubiła otoczkę, stała się gwiazdą helową i z czasem zapadła się tworząc czarną dziurę o masie 25 mas Słońca.

Przez jakiś czas pozostała, mniej masywna gwiazda tworzyła układ z czarną dziurą. Kiedy jednak zużyła paliwo, stała się olbrzymem, a jej otoczka tak się rozszerzyła, że w obrębie tej otoczki znalazła się również czarna dziura. Ta faza wspólnej otoczki była o tyle ważna, że z odseparowanego układu dwóch ciał powstał wtedy ciasny ich układ. Na skutek utraty energii orbitalnej (czarna dziura porusza się w otoczce sąsiada) układ się coraz bardziej zacieśniał. Z czasem druga gwiazda zgubiła otoczkę, stając się kolejno gwiazdą helową, supernową, a wreszcie - czarną dziurą o masie 10 Słońc. "W ten sposób powstał układ dwóch czarnych dziur, które przez 20 mln lat oddziaływały ze sobą emitując fale grawitacyjne, a przez to - stopniowo wytracały energię. Aż doszło do ich zderzenia i powstania z nich jednej masywnej czarnej dziury" - podsumowuje Aleksandra Olejak.

I to właśnie zderzenie zaobserwowano w LIGO/Virgo. Doktorantka wyjaśnia, że zderzenia czarnych dziur są - jak na tak potężne wydarzenia w kosmosie – są zaskakująco "ciche" i ciemne. Nie powstaje wtedy żadne promieniowanie elektromagnetyczne - a więc ani błyski ani np. fale radiowe. Gdyby więc nawet najlepszy teleskop świata był wycelowany w takie miejsce w odpowiednim czasie, nic spektakularnego by nie zobaczył. Na szczęście od 2015 r. mamy jako ludzkość do dyspozycji jeszcze jeden "zmysł", za pomocą którego możemy obserwować wydarzenia w Kosmosie. To obserwatoria fal grawitacyjnych LIGO (w USA) i Virgo (we Włoszech). To w nich możemy obserwować efekty zderzania się czarnych dziur.

Fale grawitacyjne (zwane też poetycko zmarszczkami czasoprzestrzeni) to rozchodzące się drgania czasoprzestrzeni. Ich źródłem są obiekty poruszające się z przyspieszeniem. Aby fale grawitacyjne dało się wykryć, masy i przyspieszenia muszą być bardzo duże. Po raz pierwszy obserwacyjne fale grawitacyjne udało się wykryć w 2015 roku.

"Odbieramy coraz więcej sygnałów z fal grawitacyjnych, ale nie zawsze wiadomo, jaki jest dokładnie scenariusz powstawania tych sygnałów. Widzimy tylko efekt końcowy. Trwają spory, skąd pochodzą te sygnały. Czy one mogły powstawać w izolowanych układach podwójnych, czy może zanim doszło do zderzenia, dochodziło do oddziaływania większej liczby ciał, np. trzech czy czterech gwiazd - bo to przecież też jest możliwe. W naszej pracy pokazujemy, że potrafimy odtworzyć historię układów takich jak GW190412 używając izolowanej ewolucji. Proponujemy też sposób, jak rozpoznać, czy dany obiekt powstał z dwóch obiektów, czy może z większej ich liczby" - podsumowuje Aleksandra Olejak.

PAP - Nauka w Polsce, Ludwika Tomala

lt/ ekr/

Przed dodaniem komentarza prosimy o zapoznanie z Regulaminem forum serwisu Nauka w Polsce.

Copyright © Fundacja PAP 2024