Superkomputer i polskie badania kwantowych fenomenów

Fot. Adobe Stock
Fot. Adobe Stock

Badania fermionów, dające nadzieje na głębsze zrozumienie procesów zachodzących wewnątrz gwiazd neutronowych, oraz badania turbulencji kwantowych występujących w nadcieczach przeprowadził - wykorzystując możliwości superkomputera LUMI - naukowiec z Politechniki Warszawskiej.

Jak poinformowała uczelnia, dr hab. inż. Gabriel Wlazłowski zakończył prace w ramach grantu obliczeniowego, realizowanego z wykorzystaniem infrastruktury najpotężniejszego europejskiego superkomputera.

Superkomputer LUMI (Large Unified Modern Infrastructure), jak porównano w komunikacie Wydziału Fizyki PW, jest "olbrzymi jak kort tenisowy". Wykonuje maksymalnie 550 petaflopsów (550 milionów miliardów) obliczeń na sekundę. Ma ekologiczne zasilanie. Jako jedyny na Starym Kontynencie pozwala na prowadzenie obliczeń będących poza zasięgiem większości badaczy.

Polska jest jednym z 10 krajów tworzących konsorcjum umożliwiające swoim członkom prowadzenie badań opartych o obliczenia wysokiej wydajności.

Dr inż. Wlazłowski badał złożone problemy mechaniki kwantowej, ze szczególnym uwzględnieniem turbulencji kwantowych występujących w nadcieczach. Szczególną uwagę poświęcił fermionom, z nadzieją na głębsze zrozumienie procesów zachodzących wewnątrz gwiazd neutronowych.

"Numeryczne symulacje układów kwantowych stanowią cały czas wyzwanie dla techniki. Dotyczy to głównie układów zbudowanych z cząstek, dla których obowiązuje zasada Pauliego. Zabrania ona dwóm fermionom zajmowania tego samego stanu kwantowego. Aby zrozumieć zachowanie się całego układu, należy śledzić zatem wszystkie stany kwantowe" - wyjaśnił naukowiec w materiale prasowym.

Przyznał, że wygenerowane w ten sposób znaczne zapotrzebowanie obliczeniowe, było wąskim gardłem dla badaczy w tej dziedzinie.

"W ramach grantu pilotażowego udało się wykonać symulację układów kwantowych, gdzie liczba rozważanych cząstek sięgała setki tysięcy. Dopiero tak duże układy dają szansę na zrozumienie właściwości układów nadciekłych i warunków, w których przepływy zmieniają charakter z laminarnego na turbulentny, co jest niezbędne w kontekście przyszłych zastosowań" - ocenił fizyk.

Więcej informacji o LUMI i pilotażowym projekcie - tutaj.

Nauka w Polsce

kol/ agt/

Fundacja PAP zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: naukawpolsce.pl, a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - naukawpolsce.pl. Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów wideo.

Czytaj także

  • Elektrodepozycja filmu nanocząstek PtNi przy użyciu techniki in-situ w komórce przepływowej w transmisyjnym mikroskopie elektronowym podczas cyklicznej woltametrii. Wiązka elektronów (tu oznaczona na zielono) oświetla elektrodę (oznaczoną na pomarańczowo), zanurzoną w roztworze soli platyny i niklu, umożliwiając obrazowanie wzrostu nanocząstek PtNi (kolor szary) na elektrodzie. Grubość filmu wzrasta z każdym cyklem i po czwartym cyklu zaobserwowano wzrost rozgałęzionych i porowatych struktur. Projekt okładki/ilustracji: Weronika Wojtowicz, tło z wodą pobrane z https://pl.freepik.com

    Narodziny nanostruktury na filmie. Ujawniono sekrety elektrodepozycji

  • Fizyk, profesor nadzwyczajny naukowy Konrad Banaszek (amb) PAP/Marcin Obara

    Fizyk: gra o technologie kwantowe już się toczy. Wykorzystamy szansę, czy ją stracimy?

Przed dodaniem komentarza prosimy o zapoznanie z Regulaminem forum serwisu Nauka w Polsce.

newsletter

Zapraszamy do zapisania się do naszego newslettera