Optyczne kombinerki chwytają przedmioty wykorzystując energię świetlną

„Optyczne kombinerki” obok mrówki Formica polyctena dla porównania skali (obraz ze skaningowego mikroskopu elektronowego (SEM) z dodanymi kolorami). Dwie szczęki narzędzia (czerwone) zamykają się, absorbując światło przesyłane przez włókna optyczne (jasnoniebieskie) o średnicy 125 mikronów, porównywalnej do średnicy ludzkiego włosa. (Źródło: Wydział Fizyki UW)
„Optyczne kombinerki” obok mrówki Formica polyctena dla porównania skali (obraz ze skaningowego mikroskopu elektronowego (SEM) z dodanymi kolorami). Dwie szczęki narzędzia (czerwone) zamykają się, absorbując światło przesyłane przez włókna optyczne (jasnoniebieskie) o średnicy 125 mikronów, porównywalnej do średnicy ludzkiego włosa. (Źródło: Wydział Fizyki UW)

Najmniejsze mikronarzędzia, wyhodowane na światłowodach o średnicy włosa opracowali naukowcy z Wydziału Fizyki UW i z krakowskiej AGH. Optyczne kombinerki potrafią chwytać przedmioty wykorzystując jedynie energię świetlną.

Chwytanie przedmiotów jest podstawową umiejętnością dla żywych organizmów, od mikroskopijnych wrotków, przez niesamowitą zręczność ludzkiej ręki, po szczęki drapieżnych wielorybów i miękkie macki olbrzymich kałamarnic. Jest także niezbędne dla wielu stale miniaturyzowanych technologii - zwracają uwagę twórcy technologii w informacji prasowej.

Chwytaki mechaniczne, napędzane siłownikami elektrycznymi, pneumatycznymi, hydraulicznymi lub piezoelektrycznymi, stosowane są w skalach milimetrów i większych, ale ich złożoność i potrzeba przenoszenia siły na odległość uniemożliwiają miniaturyzację.

Naukowcy z Wydziału Fizyki Uniwersytetu Warszawskiego wraz z kolegami z Akademii Górniczo-Hutniczej w Krakowie zastosowali mikrostruktury z ciekłokrystalicznych elastomerów, które mogą zmieniać kształt w odpowiedzi na światło, aby zbudować mikronarzędzie napędzane światłem - optyczne kombinerki (optical pliers). Urządzenie zostało skonstruowane poprzez wyhodowanie dwóch zginających się szczęk na końcówkach włókien optycznych o średnicy mniej więcej ludzkiego włosa.

"200-mikrometrowy chwytak jest sterowany zdalnie, bez okablowania elektrycznego lub przewodów pneumatycznych, jedynie zielonym światłem dostarczanym przez światłowody - pochłonięta energia świetlna jest bezpośrednio zamieniana na pracę szczęk chwytaka" - informuje Wydział Fizyki Uniwersytetu Warszawskiego w przesłanym komunikacie.

Ciekłokrystaliczne elastomery (Liquid Crystal Elastomers, LCE) to inteligentne materiały, które mogą odwracalnie zmieniać kształt pod wpływem światła widzialnego. W swoim prototypie naukowcy połączyli napędzane światłem elementy z LCE z nową metodą wytwarzania struktur w skali mikrometrów: gdy światło ultrafioletowe jest przesyłane przez światłowód, na jego końcówce rośnie struktura w kształcie stożka. Indukowana światłem mechaniczna reakcja tak powstałej mikrostruktury zależy od orientacji cząsteczek wewnątrz elementu elastomerowego i może być kontrolowana w celu uzyskania zgięcia lub skurczu mikroelementów. Nowa technika wzrostu struktur z elastomerów oferuje możliwość wytwarzania różnych zdalnie sterowanych elementów w skali mikrometrowej.

Badania nad elastomerowymi mikrostrukturami zasilanymi światłem są finansowane przez Narodowe Centrum Nauki w ramach projektu "Mechanizmy wykonawcze w mikroskali na bazie foto-responsywnych polimerów".

PAP - Nauka w Polsce

ekr/ agt/

Fundacja PAP zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: naukawpolsce.pl, a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - naukawpolsce.pl. Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów wideo.

Czytaj także

  • fot. Ludka Tomala, wygenerowane przez AI

    Podręczniki do poprawy: Monogamia nie jest fundamentalną cechą w fizyce kwantowej

  • Adobe Stock

    Taniec materii z antymaterią. Nowy pomysł Polaków na biomarker dla tomografii

Przed dodaniem komentarza prosimy o zapoznanie z Regulaminem forum serwisu Nauka w Polsce.

newsletter

Zapraszamy do zapisania się do naszego newslettera