Sztuczna inteligencja: twarze jak chmura gradowa

Fot. Fotolia
Fot. Fotolia

Stosowane do rozpoznawania twarzy techniki sztucznej inteligencji dobrze radzą sobie również z oceną chmur gradowych - informuje pismo „Monthly Weather Review”.

Opady gradu mogą mieć znaczący wpływ ekonomiczny, zwłaszcza na rolnictwo i nieruchomości.

Jak wykazali naukowcy z National Center for Atmospheric Research (NCAR), oparte na sieciach neuronowych techniki sztucznej inteligencji pozwalają rozpoznawać cechy poszczególnych burz, które wpływają na formowanie się gradu i to, jak duże będą poszczególne bryłki lodu (gradziny). Dotychczasowe metody miały poważne trudności z tego rodzaju prognozowaniem, ponieważ analizowały niewielki wycinek burzy i nie były w stanie ocenić jej szerszej formy i struktury.

To, czy podczas burzy dochodzi do gradobicia, zależy od licznych czynników meteorologicznych. Powietrze musi być wilgotne blisko powierzchni ziemi, ale suche wyżej. Niezbędne są silne prądy wstępujące, które utrzymują grad w powietrzu wystarczająco długo, aby mógł urosnąć (czasami średnica gradzin znacznie przekracza 50 mm). Istotną rolę odgrywają również zmiany kierunku i prędkości wiatru na różnych wysokościach w trakcie burzy.

Nawet gdy wszystkie te kryteria są spełnione, wielkość powstałych gradzin może się znacznie różnić w zależności od ścieżki, którą grad pokonuje podczas burzy - i warunków na tej ścieżce. Dlatego znaczenie ma pozioma (horyzontalna) struktura burzy.

Obecne modele komputerowe ogranicza matematyczna złożoność, niezbędna do przedstawienia fizycznych właściwości burzy. Uczenie maszynowe pozwala obejść się bez modelu obejmującego całą skomplikowaną fizykę burzy. Zamiast tego sieć neuronowa ucząca się maszynowo jest w stanie pobierać duże ilości danych, wyszukiwać wzorce i uczyć się, które funkcje burzowe są kluczowe, aby dokładnie przewidzieć, czy i jakiego gradu można się spodziewać.

W ramach badań naukowcy zastosowali model uczenia maszynowego przeznaczony do analizy obrazów wizualnych. Wytrenowali go, wykorzystując obrazy symulowanych burz wraz z informacjami o temperaturze, ciśnieniu, prędkości i kierunku wiatru jako dane wejściowe i symulacje gradu wynikające z tych warunków jako dane wyjściowe. Ogólnie rzecz biorąc model potwierdził te cechy burz, które wcześniej były powiązane z gradem. Na przykład burze, które mają niższe niż przeciętnie ciśnienie w pobliżu powierzchni i wyższe niż przeciętnie ciśnienie w pobliżu szczytu burzy (co tworzy silne prądy wstępujące), częściej powodują silne gradobicie. Podobnie jest z burzami, w których wiatry wieją z południowego wschodu w pobliżu powierzchni i z zachodu na szczycie oraz burzami o bardziej okrągłym kształcie.(PAP)

Autor: Paweł Wernicki

pmw/ zan/

Fundacja PAP zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: naukawpolsce.pl, a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - naukawpolsce.pl. Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów wideo.

Czytaj także

  • Fot. Adobe Stock

    Najczęściej cytowany artykuł dotyczący Covid-19 wycofany po czteroletnim sporze

  • Fot. Adobe Stock

    Roślinne napoje nie tak odżywcze, jak się wydają

Przed dodaniem komentarza prosimy o zapoznanie z Regulaminem forum serwisu Nauka w Polsce.

newsletter

Zapraszamy do zapisania się do naszego newslettera